Gas Kinetics-A. F. Trotman-Dickenson 1955
Gas Kinetics-G. L. Pratt 1969 'Based on a course of lectures given at the University of Sussex.'
Chemical Kinetics of Gas Reactions-V. N. Kondrat'Ev 2016-01-22
Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The remaining chapters examine gas reactions, such as molecular collisions, photochemical reactions, chemical reactions in electrical discharge, chain reactions, and combustion. This book will be of value to reaction kinetics engineers and researchers.
Gas-Phase Reactions-V.N. Kondratiev 2012-12-06
The present monograph appears after the death of Professor V. N. Kondratiev, one of those scientists who have greatly contributed to the foundation of contemporary gas kinetics. The most fundamental idea of chemical kinetics, put forward at the beginning of the twentieth century and connected with names such as W. Nernst, M. Bodenstein, N. N. Semenov, and C. N. Hinshelwood, was that the complex chemical reactions are in fact a manifestation of a set of simpler elementary reactions involving but a small number of species. V. N. Kondratiev was one of the first to adopt this idea and to start investigations on the elementary chemical reactions proper. These investigations revealed explicitly that every elementary reaction in turn consisted of many elementary events usually referred to as elementary processes. It took some time to realize that an elementary reaction, represented in a very simple way by a macroscopic kinetic equation, can be described on a microscopic level by a generalized Boltzmann equation. Nevertheless, up to the middle of the twentieth century, gas kinetics was mainly concerned with the interpretation of complex chemical reactions via a set of elementary reactions. But later on, the situation changed drastically. First, the conditions for reducing microscopic equations to macroscopic ones were clearly set up. These are essentially based on the fact that the small perturbations of the Maxwell-Boltzmann distribution are caused by the reaction proper.
Kinetics and Dynamics of Elementary Gas Reactions-Ian W. M. Smith 2013-10-22
Kinetics and Dynamics of Elementary Gas Reactions surveys the state of modern knowledge on elementary gas reactions to understand natural phenomena in terms of molecular behavior. Part 1 of this book describes the theoretical and conceptual background of elementary gas-phase reactions, emphasizing the assumptions and limitations of each theoretical approach, as well as its strengths. In Part 2, selected experimental results are considered to demonstrate the scope of present day techniques and illustrate the application of the theoretical ideas introduced in Part 1. This publication is intended primarily for working kineticists and chemists, but is also beneficial to graduate students.
Gas Kinetics-M. F. R. Mulcahy 1973-01-01
Gas Kinetics and Energy Transfer- 1974
Gas Kinetics and Energy Transfer-P G Ashmore 2007-10-31
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering
Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.

Gas Kinetics-G. L. Pratt 1969-01

Gas Kinetics and Energy Transfer- 1978

Gas Kinetics and Energy Transfer-P G Ashmore 2007-10-31 Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.

Gas Kinetics and Energy Transfer-P G Ashmore 2007-10-31 Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.

Reaction Kinetics-Keith J. Laidler 2013-10-22 Reactions Kinetics: Volume I: Homogeneous Gas Reactions presents a general introduction to the subject of kinetics, including the basic laws of kinetics and the theoretical treatment of reaction rates. This four-chapter book deals mainly with homogeneous reactions in the gas phase. Chapter 1 presents the kinetic laws based on experimental results in terms of their simple concepts, with a special consideration of the way in which rates depend on concentration, while Chapter 2 deals with the interpretation of rates in terms of more fundamental theories. Chapter 3 covers the overall reactions that are believed to be elementary, such as the reaction between hydrogen and iodine, the reverse decomposition of hydrogen iodide, the corresponding reactions involving deuterium instead of hydrogen, and the dimerizations of butadiene and cyclopentadiene, as well as a few elementary termolecular reactions, all involving nitric oxide. This chapter also includes a general account of some of the elementary reactions that occur as steps in more complex mechanisms. Chapter 4 examines the reaction rates of numerous complex gas reactions. Undergraduate physical chemistry and chemical kinetics students, as well as
advanced students in other fields, such as biology and physics, will find this book invaluable. Kinetics of Metal-Gas Interactions at Low Temperatures-Eckehard Fromm 2012-12-06 This book presents experimental data and recent results of model calculations on the formation of natural oxide film on metal surfaces and of metal hydride formation. Such films are responsible for corrosion, friction, and wear of metallic materials. Describing mostly the authors own research, this monograph gives an overview of models suitable for metal-gas reactions and demonstrates how complex metal-gas interactions can be analyzed by standard procedures of chemical kinetics. The book, and the data and equations it contains, will be useful to researchers in surface science, condensed-matter physics, and materials science.

Gas Kinetics and Energy Transfer-Royal Society of Chemistry (Great Britain) 1981
Plasma Kinetics in Atmospheric Gases-M. Capitelli 2013-03-09 Emphasis is placed on the analysis of translational, rotational, vibrational and electronically excited state kinetics, coupled to the electron Boltzmann equation.

Gas-Phase Thermal Reactions-Guy-Marie Côme 2013-03-14 This book is devoted to Gas-Phase Thermal Reactions (GPTRs), and especially combustion reactions, which take place in engines, burners and industrial chemical reactors to produce mechanical or thermal energy to incinerate pollutants or to manufacture chemical substances, and which play an important part due to the consequences they have on the environment: fires and explosions, tropospheric pollution, greenhouse effect, hole in the stratospheric ozone layer. The design and running of engines, burners, incinerators, industrial reactors, both economical in fuels, raw materials and energy, efficient, safe and clean, as well as the scientific evaluation of the causes and the effects of atmospheric pollutions with a view to taking rational environmental decisions, which necessitate an understanding of the fundamental mechanisms of these reactions and an access to models allowing numerical simulations of the phenomena being studied to be carried out. The analysis of the results of the simulations then allows an optimal solution to be found to the industrial problem or to extrapolate the natural phenomena.

Kinetics and Dynamics of Elementary Gas Reactions-Ian W. M. Smith 1980 Kinetics and Dynamics of Elementary Gas Reactions surveys the state of modern knowledge on elementary gas reactions to understand natural phenomena in terms of molecular behavior. Part 1 of this book describes the theoretical and conceptual background of elementary gas-phase reactions, emphasizing the assumptions and limitations of each theoretical approach, as well as its strengths. In Part 2, selected experimental results are considered to demonstrate the scope of present day techniques and illustrate the application of the theoretical ideas introduced in Part 1. This publication is intended ...

High Pressure Gas Kinetics-Melvyn Leroy Dutton 1971
Gas-Phase Pyrolytic Reactions-Nouria A. Al-Awadi 2019-12-05 Offers a physical organic chemistry and mechanistic perspective of the chemistry of thermal processes in the gas phase. The book looks at all aspects of the chemical processing technique called gas-phase pyrolysis, including its methodology and reactors, synthesis, reaction mechanisms, structure, kinetics, and applications. It discusses combinations of pyrolytic reactors with physiochemical techniques, routes for and reactions for the synthesis of organic compounds, and the control of reaction rates. Gas-Phase Pyrolytic Reactions: Synthesis, Mechanisms, and Kinetics starts with in-depth chapter coverage of static pyrolysis, dynamic flow pyrolysis, and analytical pyrolysis. It then examines synthesis and applications, including flash vacuum pyrolysis in organic synthesis, elimination of HX, elimination of CO and CO2, pyrolysis of Meldrum’s acid derivatives, and elimination of N2. A chapter on reaction mechanism comes next and includes coverage of retro-ene reaction and reactive intermediates. Following that are sections covering: structure/reactivity correlation, functional group & structural frame interconversions; gas-phase pyrolysis of hydrazones and phosphorus Ylides; and more. Deals with a growing area of chemistry and engineering interest that fits under the practices of green and sustainable chemistry. Addresses several important aspects: methodology and reactors, synthesis, reaction mechanisms, structure, kinetics, and applications. Reviews general methods of pyrolysis techniques Sets out the fundamentals and advantages of gas-phase pyrolysis in a way that illustrates
its wide potential applications Gas-Phase Pyrolytic Reactions: Synthesis, Mechanisms, and Kinetics will appeal to organic chemists, physical organic chemists, chemical engineers and anyone interested in green/sustainable chemistry, chemical synthesis, or process chemistry. The Kinetic Theory of Gases-Leonard B. Loeb 2004-01-01 A pioneering text in its field, this comprehensive study is one of the most valuable texts and references available. The author explores the classical kinetic theory in the first four chapters, with discussions of the mechanical picture of a perfect gas, the mean free path, and the distribution of molecular velocities. The fifth chapter deals with the more accurate equations of state, or Van der Waals’ equation, and later chapters examine viscosity, heat conduction, surface phenomena, and Browninan movements. The text surveys the application of quantum theory to the problem of specific heats and the contributions of kinetic theory to knowledge of electrical and magnetic properties of molecules, concluding with applications of the kinetic theory to the conduction of electricity in gases. 1934 edition.

Reaction Kinetics (majalah) Gas Kinetics and Energy Transfer (majalah).- 1968

Kinetics Of Gas Reaction VIA-Willhelm Jost 2012-12-02 Physical Chemistry: An Advanced Treatise, Volume VIA: Kinetics of Gas Reactions discusses single reaction steps, such as transformations of atoms and molecules in specified velocities, impact parameters, and inner states into products of specified states. This book is divided into six chapters. Chapter 1 covers formal kinetics, while Chapter 2 reviews the survey of kinetic theory, as one of the bases of reaction kinetics. The Born-Oppenheimer adiabatic approximation, valence bond method, and orbital symmetry in reaction kinetics are elaborated in Chapter 3. Chapter 4 is devoted to the theory of energy transfer in molecular collisions, considering the several possible types of energy exchange. Chapter 5 focuses on the molecular beam scattering experiments on elastic, inelastic, and reactive collisions. The dynamics of bimolecular reactions are elaborated in the last chapter. This volume is intended for graduate and physical chemistry students interested in kinetics of gas reactions.

Gas Kinetics and Energy Transfer (majalah) Reaction Kinetics (majalah).-Chemical Society (London) 1976

Kinetics of Chemical Gas Reactions-Viktor Nikolaevich Kondrat’ev 1962

Rarefied Gas Dynamics-K Karamcheti 2012-12-02 Rarefied Gas Dynamics is a collection of selected papers presented at the Eighth International Symposium on Rarefied Gas Dynamics, held at Stanford University in July 1972. The book is a record of the significant advances in the broad field of Rarefied Gas Dynamics that are considered to be of general and continuing interest. The articles in this compendium are organized under 10 main topics. The text presents research papers on the kinetic theory of gases; studies and experiments on shock structures of gases; use of kinetic theory for the solution of problems in evaporation and condensation; gas expansions and jets; and techniques and methods applied to the study of rarefied gas dynamics. The book also includes works on gas-solid interactions; descriptions of basic notions of current polyatomic gas kinetics; and observation of the gas dynamic phenomena in space. Physicists, aeronautical engineers, mechanical engineers, researchers, and students in the field of aircraft design will find this book a good source of knowledge and information.

Applied Gas Kinetics and Gas Dynamics-Soloway Becker 2012-09 The ultimate purpose of this book is to develop recommendations for the design of research and monitoring program to quantify and evaluate the significance of gas kinetics and gas dynamics development activities. It is intended that the book will prove to be a useful compendium to the students, teachers and researchers in this field.

Gas Kinetics and Energy Transfer- 1978

Chemical Kinetics-John Edward Nicholas 1976

The Gas Kinetics of Very High Flight Speeds-Eugen Sänger 1950 The aerodynamic forces on bodies of arbitrary shape were investigated under conditions such that the mean free path of the air molecule is greater than the dimensions of the body. Air pressures and friction forces were calculated from gas kinetic theory for surfaces facing both toward and away from the air stream at any angle. Air forces for an atmosphere of definite composition (molecular hydrogen) were
calculated as a function of the flight velocity. The results indicate that the friction stresses between the air and the body surface are of the same magnitude as the dynamic pressure and as the air pressures normal to the surface. The application of the general method to the specific cases such as thin airfoils and projectiles leads to high drag coefficients and poor glide ratios even for the theoretically best wing sections.

Generalized Boltzmann Physical Kinetics-Boris V. Alexeev 2004-05-25 The most important result obtained by Prof. B. Alexeev and reflected in the book is connected with new theory of transport processes in gases, plasma and liquids. It was shown by Prof. B. Alexeev that well-known Boltzmann equation, which is the basement of the classical kinetic theory, is wrong in the definite sense. Namely in the Boltzmann equation should be introduced the additional terms which generally speaking are of the same order of value as classical ones. It leads to dramatic changing in transport theory. The coincidence of experimental and theoretical data became much better. Particularly it leads to the strict theory of turbulence and possibility to calculate the turbulent flows from the first principles of physics. · Boltzmann equation (BE) is valid only for particles, which can be considered as material points, generalized Boltzmann equation (GBE) removes this restriction. · GBE contains additional terms in comparison with BE, which cannot be omitted · GBE leads to strict theory of turbulence · GBE gives all micro-scale turbulent fluctuations in tabulated closed analytical form for all flows · GBE leads to generalization of electro-dynamic Maxwell equations · GBE gives new generalized hydrodynamic equations (GHE) more effective than classic Navier-Stokes equations · GBE can be applied for description of flows for intermediate diapason of Knudsen numbers · Asymptotical solutions of GBE remove contradictions in the theory of Landau damping in plasma

International Symposium on Gas Kinetics ; 9- 1987
International Symposium on Gas Kinetics ; 11- 1990
Non-Equilibrium Reacting Gas Flows-Ekaterina Nagnibeda 2009-07-09 In the present monograph, we develop the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures and discuss its applications to strongly non-equilibrium conditions. The main attention is focused on the influence of non-equilibrium kinetics on gas dynamics and transport properties. Closed systems of fluid dynamic equations are derived from the kinetic equations in different approaches. We consider the most accurate approach taking into account the state-to-state kinetics in a flow, as well as simplified multi-temperature and one-temperature models based on quasi-stationary distributions. Within these approaches, we propose the algorithms for the calculation of the transport coefficients and rate coefficients of chemical reactions and energy exchanges in non-equilibrium flows; the developed techniques are based on the fundamental kinetic theory principles. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles. The comparison of the results obtained within the frame of different approaches is presented, the advantages of the new state-to-state kinetic model are discussed, and the limits of validity for simplified models are established. The book can be interesting for scientists and graduate students working on physical gas dynamics, aerothermodynamics, heat and mass transfer, non-equilibrium physical-chemical kinetics, and kinetic theory of gases.

Shock Tubes for High Temperature Gas Kinetics-ARTHUR. KANTROWITZ 1962
GAS KINETICS-
Interaction of Metals and Gases- 1971-06-18
Gas Kinetics-Royal Society of Chemistry. Gas Kinetics Group 1982
Kinetics Of Gas Reaction VIB-Willhelm Jost 2012-12-02 Physical Chemistry: An Advanced Treatise: Kinetics of Gas Reactions, Volume VIB, is devoted to gas phase chemical reactions. The purpose of this treatise is to present a comprehensive treatment of physical chemistry for advanced students and investigators in a reasonably small number of volumes. An attempt has been made to include all important topics in physical chemistry together with borderline subjects which are of particular
interest and importance. The book contains six chapters and begins with a study on the elastic and inelastic scattering of ions on molecules, including such topics as rainbow scattering, reactive scattering, and experimental procedures and results of high-resolution measurements. This is followed by separate chapters on collision processes and the theory of elastic scattering; and atom reactions, with a discussion of experimental techniques (static, flow, and pulse methods), among the selected examples being the reactions of H, O, C, and N atoms with alkanes, alkenes, acetylene, sulfur, and nitrogen compounds. Subsequent chapters deal with experimental methods and results obtained by several techniques of relaxation methods in gases; thermal unimolecular reactions; and the interactions between chemical reactions, transport processes, and flow phenomena.

Gas Kinetics

Yeah, reviewing a ebook gas kinetics could accumulate your near links listings. This is just one of the solutions for you to be successful. As understood, triumph does not suggest that you have fabulous points. Comprehending as competently as treaty even more than supplementary will find the money for each success. next to, the message as competently as perception of this gas kinetics can be taken as competently as picked to act.

Related with Gas Kinetics:

- financial accounting fifth canadian edition with myaccountinglab
- tea leaf reading symbols
- glass menagerie study guide